
283 

12. BONENBLAST KH.F. and KARLIN S., On a theorem of Ville. In: Infinite Antagonistic Games. 
Moscow, Fixmatgiz, 1963. 

13. PONTRYAGIN L.S., On the linear differential games. 2. Dokl. Akad. Nauk USSR, 175, 4, 1967. 
14. UKHOBOTOV V.I., On the construction of a stable bridge in a retention game. PMM, 45, 2, 

1981, 

Translated by L.K. 

PMM ~.S.S.R.,Vol.52,No.3,pp.283-289,1988 
Printed in Great Britain 

0021-8928,‘88 $lO.OO+O.OO 

01989 Pergamon Press plc 

ASYMPTOTIC TRAJECTORIES AND THE STABILITY OF THE PERIODIC MOTIONS OF 
AN AUTONOMOUS HAMILTONIAN SYSTEM WITH TWO DEGREES OF FREEDOM* 

A.P. MARKEYEV 

The existence of motions asymptotic to the periodic trajectories of a 
Hamiltonian system with two degrees of freedom is studied. It is assumed 
that the Hamiltonian function is time-independent and analytic in the 
neighbourhood of the periodic trajectories. It is noted that, under 
certain constraints, the conditions for the existence of asymptotic 
trajectories are equivalent to the conditions for orbital instability of 
the limiting periodic motion. As an application, the asymptotic trajectories 
in the problem of the motion of a dynamically symmetric rigid body relative 
to the centre of mass in a central Newtonian gravitational field in a 
circular orbit and in the problem of the motion of a heavy rigid body with 
a fixed point are considered, 

1. Isoenergetic reduction. Let a generalized conserative system with two degrees 
of freedom have a T-periodic motion, distinct from the equilibrium position, and in the 
neighbourhood of the closed trajectory of the phase space corresponding to this periodic 
motion (PM), let the Hamiltonian function H be analytic. 

Two characteristic exponents of the system of equations of the perturbedmotion, linearized 
in the neighbourhood of the periodic motion, are always (in the case of an autonomous 
Hamiltonian system) equal to zero. If the other two characteristic exponents have a non-zero 
real part, then the PM is orbitally unstable. If they are pure imaginary (equal to *ia), 
then both orbital instability and stability are possible, depending on the type of non-linear 
terms in the equations of the perturbed motion. In fact, if kaf no(w = 2&T; k = 1, 2, 3, 4; 
n is an integer), we usually have orbital stability; the case k = I,2 correspond to the 
boundary of the domains of orbital stability to a first approximation, while with k = 3,4 
orbital instability is possible inside these domains. A similar description of the conditions 
for stability and instability may be found in /l, 2/; we shall merely remark here that they 
are the same as the stability and instability conditions at the isoenergetic level Hz/r.= 

const, at which the trajectory of the PM considered lies. 
To solve the problem of the existence of trajectories asymptotic to the PM trajectory, 

we observe that the asymptotic trajectories must correspond to the same value of the constant 
h as does the PM trajectory. At this fixed energy level, the equations of motion (Whittaker 
equations) have the form of the Hamilton equations /3/. Let us obtain these. 

We can always choose /4/ (though in general this is extremely difficult) the canonical 
conjugate variables ,qi, pi (i = 1,2) i n such a way that the PM corresponds to their values 

91 = 6Jt + 410, Pi = 42 = P2 = 8 (I.11 

where t is time, and qlo is the initial value of the coordinate 4%. The Hamiltonian function 
is then &r-periodic in q,. 

It can be assumed without loss of generality that the trajectory of the PM (1.1) lies at 
the zero energy level H= 0. The Hamiltonian function can be expanded in a converging series 
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in powers of PI> 'la, Pat whose coefficients are Lx-periodic in Q,. we obtain 

ZZ : op, + H, + H:, + H, + . . . (IL!) 

where Hh- is a form of degree k iI! p,, qz. pL. The first three of these are required later; 

they are 

(1.3) 

Here, 1~~ and fr are forms of degrees k ancl 1 respectively in 923 P2 with coefficients 

that are %-periodic in 4,; the coefficients ai and b, are likewise &c-periodic in ~1,. 

From the equation N = 0 we have 

Pl = - K (rl?, Pz; 4,) (1.4) 

The function K can be expanded in the convergent series 

K = K, + K, + K, -t . . . (1.5) 

where K, is a form of degree m in V1? PZ> with coefficients 2;c-periodic in q,. For the 

first three forms we have 

K, = o-‘h,, Ii, = co-%, - cl-2 (a,& + a,p,)h, 

K, = o-‘h, - 6’ (a,qz + a,p,) h, - o-” (b,y,” f b,7,p, + 
b,pz2) IL, f co-,I (a,~, + a,p,)” h, f o-3a,h,‘z 

(1.6) 

For practical applications it is worth noting that terms of higher than the first degree 

in pi in H,, andterms of all degrees in p, in Ha, donot affect terms of up to an including 

the fourth deqree in expansion (1.5). 
Whittaker equations have the form 

dq,!dq, = 8K~C?pL, dp,ldq, = - aKlaq, (1.7) 

In short, in an autonomous Hamiltonian system with two degrees of freedom, the problem 

ofthetrajectories asymptotic to a closed PM trajectory reduces totheproblemofthe motions, 

asymptotic to the equilibrium position qz=Z&=O, of a Hamiltonian system with one degree 

of freedom with a 2n-periodic dependence of the Hamiltonian function K(qz, p2; q,) on the 

independent variable ~7~. 
If a solution qz = q2 (q,), pa =pz(qi), of Eqs.Cl.7) can be found, then p1 can be found as 

a function of q1 by substituting this solution into the right-hand side of Eq.(1.4). The 

dependence of q, on t can then be found by means of one quadrature from the equation 

dq,‘dt = o + 8 (H - op,)iap, (1.8 

whose right-hand side is written as a function of q,. 
Given sufficiently small values of 1 qJ 1, 1 ps I, the function 8 (H - wp,)i8p, can be as 

small as desired. In the problem of the trajectories, asymptotic to the PM trajectory, there- 

fore, the coordinate qi can play the same role as the time t. To describe the asymptotic 

solutions of system (1.7), we shall use the results of /5, 6/. 

2. Asymptotic notions in the case of real characteristic exponents. We will 

take the characteristic equation of the linearized system (1.7) with Hamiltonian K, 

p2 - 2Ap + 1 = 0 (2.1) 
In this equation, A is a constant, which can be found in the usual way /7/ fromthevalues 

of the elements of the matrix of fundamental solutions of the linearized system at the point 

&It = 2n. 
If IA I>17 the characteristic exponents 3% of the linearized system (1.7) are real 

and 

x = (2n)-IIn (I A 1 + VA” - 1) 

(Here, two characteristic exponents of the initial (unreduced) linear system of equations 

of the perturbed motion are also real and equal to 2x0, while the PM is orbitally unstable). 

In this case /5/ the following canonical change of variables exists: 

Yz -1 cp (5, rl; (li), Pz = 11 (5, q; 4J (2.2) 

given by the series 'p and Q, which converges in a sufficiently small neighbourhood of the 

origin E = n = 0 with coeffici.ents %-periodic in q,, and such that, in the new variables, 
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the differential Eqs.cl.7) have the form 

@I& = arl~, d+fq, = - aI’/@ (2.3) 

The analytic function r is independent of 91, while 5 and 9 are contained in its 
series expansion as the prod&t 5 =&l: 

r = xc + . . . (2.4) 
System (2.3) with Hamiltonian function (2.4) can easily be integrated. Denoting the 

initial values of the variables by the zero subscript, we obtain 

g = Ea exp (r'qi), 11 = 'lo exp (-%) (2.5) 

where I" is the derivative of r with respect to 5, evaluated for 5 = C&l. 
Substituting (2.5) into (2.21, we obtain the general solution of system (1.7) in a 

sufficiently small neighbourhood of the origin qe = pn = Oa 

qa = 9 (E. exp (r’qi), q. e=p (--rfqh q3 (2.6) 

pa = 9 6 exp (r*q,), ‘lo =P (--rw; qt) 

Solutions asymptotic to the origin as q,+ + 00, are obtained from (2.6) with 5 = 0. 
We have 

qs = V (0, q. exp (-xqJ; q,) 

PI = Ip (0, ‘Ia exp (-m); q*) 

(2.7) 

while the solutions asymptotic to the origin as q,-+ -CO, are obtained from (2.6) with 
'lo = 0: 

PI = cp (L e=p (xqA 0; ql) (2.8) 

PI =$ GO exp (xq,), 0: 9,) 

The left-hand sides of Eqs.(2.7) and (2.8) are series in powers of q,,exp (-xq,), E,exp (xq3 
respectively; the coefficients of the series are 2n-periodic functions of ql. 

To sum up, with IA I>1 there are just two families of trajectories, asymptotic as 
t+*m to the closed PM trajectory of the initial autonomous Hamiltonian system with two 
degrees of freedom. The PM is itself orbitally unstable. 

3. Asymptotic motions in the case of pure imaginary characteristic ex- 
ponents. Now let JA l<i. The characteristic exponents fib of the linearized system 
(1.7) are then pure imaginary, while 

cos 2nh = A (3.1) 
(In the present case, the two characteristic exponents *ia of the unreduced linear 

system of equations of the disturbed motion are also pure imaginary (cc = ho), and the PM is 
orbitally stable to a first approximation). If 3h and 4)1 are not integers, then the 
Hamiltonian function (1.5) can be reduced by means of the change of variables Pa> Ps-t E, q I 
analytic in t,il, and %-c-periodic in qi, to the form 

K = ar + car’ + K’ (5, rl; qd 
(5 = 16 sin 'pa q = l/% cos (p, K’ = 0 (r&l*), cp = COILS~) 

(3.2) 

If c*#O, then system (1.7) has no solutions /6/, asymptotic to the equilibriumposition 
q* = ps = 0. 

In the case of third-order resonances (3h is an integer), the Hamiltonian (1.5) can be 
transformed /2/ to 

K = ar’l* sin 3~ + 0 (9) (a = const) (3.3) 

If o+o, then system (1.7) has just six /6/ families of solutions, asymptotic to the 
origin qn = pI = 0 ; three are asymptotic as pi+ -I- 00, and the other three, as Qi-+--m; 
for sufficiently large 1 qllJ, the quantities qn and ps are of the order of Iqi 1-l. 

With fourth-order resonance (4h is an integer), the Hamiltonian (1.5) can be reduced to 
the form 

K = 9 (c + b sin 49) + 0 (r") (c. b = const) (3.4) 

If Ibl-clcl, then system (1.7) has no solutions asymptotic to the origin /6/. If 

I bl> I c I, there are just eight families of asymptotic solutions: four tend to the origin as 
qi+ + m, and four, as pi-+- 00; for sufficiently large Iqll, the quantities qs and pa 
are of ihe order of I q1 I-“*. 

To sum up, if IAl<i, and there are no third- and fourth-order resonances, and cs in 
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the Hamiltonian (3.2) is nori-zero, then there are no trajectories asymptotic to tiit> PM 
trajectory, and the PM is orbitally stable. In the case of a third-order resonance, thert: 
are six families of asymptotic trajectories (if a#0 in (3.3)) and the PM is orbitally 
unstable. In the case of fourth-order resonance, either there are eight families of asymp- 

totic trajectories (if /b 112 /c I), or there are no asymptotic trajectories (if I b I s : c 9; 
in the former case the PM is orbitally unstable, and in the latter, orbitally stable. 

4. The asymptotic trajectories of the equations of the basic problem of 
dynamics. The (Poincar;) basic problem of the dynamics of systems with two degrees of 

freedom is to investigate the trajectories for the canonical system of ordinary differential 

equations with the Hamiltonian function 

H 7~ H, (I,, 12) + PH, (I,, I,, (~'1, wy) + (4.1) 

where H is analytic in all its arguments and &-periodic in IO,. wg; O< p< 1. 

If p=o the motion in the system with Hamiltonian (4.1) is given by the relations 

Ii = Ii0 (i = 1, 2), '01 = 01 (Ii,, I,,) t, G? = o,(Z,,, I,,) t + IJ (4.7) 

where Ii, and (5 are arbitrary constants, and oi = BH,laZi; it can be assumed without loss 

of generality that the initial value of w, is zero, since the equations of motion do not 

contain time explicitly, and the function ai (ZiO, Z,O) can be assumed to be non-zero. 
If the frequency ratio wli'oz is a rational number, then the motion (4.2) is time-periodic 

with some period T. 

If p is non-zero but sufficiently small, the existence of T-periodic motions in the 

system with Hamiltonian (4.1) can be proved by Poincare's method /8/. For this, we have to 

find the mean value (H,) of the function H, in the unperturbed motion (4.2): 

(H,) = + 5 H, (I,,, , I,,, qt. co,t + u) dt 

0 

Note that (Hi> is a function of I,,, I,,, U. 
If, with Ii = ziO, the Hessian of H, is non-zero and for some G = 0* we have the 

conditions 

8 (H,).‘do = 0, P(H,)ldd # 0 (4.3) 

then, for sufficiently small ~1, there exists a T-periodic motion which is analytic with 

respect to p and transforms, for I"=o, into the motion (4.2), in which 0 = cr*. 

Two characteristic exponents corresponding to this motion are zero, while the other two 

(*S) can be expanded in convergent series in powers of j/F:6 =bl ~/~+S+L + . . . . where 

If the expression in parentheses in (4.4) is non-zero (i.e., the unperturbed system is 

isoenergetically undegenerate), then, under conditions (4.3), the number of values (J.+ for 

which 612> 0 is equal to the number of oJ* for which 6,2< 0. Consequently, from the 

undisturbed PM (4.2) for small p#O are generated pairs of PM's; one PM of a pair is 

orbitally unstable (with 6,'> 0), and the other (with 6,2< 0) is orbitally stable to a first 

approximation. 

For 6,2> 0 the non-zero characteristic exponents corresponding to the perturbed PM 

are real and of opposite sign; in accordance with Sect.2, there are in this case just two 

families of trajectories, asymptotic as t+ f 00 to the trajectory of the disturbed PM. 

For 6,2<0 the non-zero characteristic exponents are pure imaginary. If we require 

additionally that, for (J = u* the following inequality be satisfied: 

3 
a~ a,) a= (HI> 
-SF- 

T_5(q.!g)‘+o (4.5) 

then the Poincare PM is orbitally stable, not only to a first approximation, but also in the 
strict non-linear statement of the problem*.(*See: Saitbattalov A.A., Poincarg periodic 

solutions and their stability in the problem of the motion of a rigid body under the action 
of gravitational moments, Candidate Dissertation, Aviation Institute, Moscow, 1904.) In 

accordance with Sect.3, in this case there are no trajectories asymptotic to the PM trajectory. 

5. The motions of a satellite about its centre of mass, which are asymp- 
totic to its PM generated from plane rotations. Let the centre of mass 0 of the 

dynamically symmetric satellite (rigid body) move over a circular orbit in a CentralNewtonian 

gravitational field. The orientation of the satellite relative to the orbital coordinate 
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system (its OX, OY, and 02 axes are directed respectively along the radius vector of the 

centre of mass, the velocity vector of the latter, and the binormal to the orbit) will be 

specified by the Euler angles $, 8, (p, which are introduced in the usual way. Let A and C 

be the equatorial and polar moments of intertia of the satellite, and o0 the angular velocity 

of the centre of mass over the orbit. As the independent variable we take the true anomaly 

v = o,t, while the generalized momenta, canonically conjugate with I#, 8, cp, are reduced to 

dimensionless form with the aid of the factor Ao,. Since cp is a cyclical coordinate, we 

have pq = con&. If pm = 0, plane satellite motions are possible, in which its axisof symmetry 

always remains in the plane of the orbit. 
Let IpppI be small. We shall also assume that the moments of inertia A and C have close 

values. We put p = (C - A)/(2A), pr = pp, where 1 p I< 1, fi = 0 (1). The Hamiltonian function 

corresponding to the canonical differential equations which describe the motion of the 

satellite about the centre of mass, has the form /9/ 

H = lfz sine2 0 pa2 - p0 + V2Pe2 + p (3 sin* 9 co9 8 - (5.1) 
f3 cos 0 sine2 Bplp) + . . . 

Here and below, the dots denote a set of terms of higher than the first order in p. 

With p=o, the equations of motion with the Hamiltonian (5.1) have the particular 

solution 

8 = 'lzn, 9 = OV + $0, Pe = 0, pq>=o(U = 0 + 1 = const) (5.2) 

which corresponds (for o +O) to the motion of the satellite in which its axis of symmetry 

rotates in the OXY plane with angular velocity woo. This motion is periodic: in a time 

T = 2n/(/ WI wo) the axis of symmetry returns to its initial position in the orbital coordinate 

system. 
Now let 1 p 1 be non-zero but fairly small. Then /9/, if I/o is not an integer, there 

is a satellite motion, analytic in p, and T-periodic in t, which transforms, for p = 0, into 
the plane rotation (5.2). This solution can be written in the form of the series 

e = '/,sc - pc-'fi + . . . (5.3) 
* = WY + 7j0 + ~.S/,o-2 sin 2 (mv + tj~& + . . . 
po = . . ., pq, = 0 + p.v,o-1 cos 2 (OY + $0) + . . . 

When studying the stability of the motion (5.3), it was shown in /9/ that on the curves 

in the CL, o plane 

0 = -31, + a/& + . . . . w = -3 --I& + . . . (5.4) 

the PM is orbitally unstable. On the curves (5.4) there is the third-order resonance 31, = 
-2. Instability is also possible at resonances 3J. = 21, where 1 is an integer, 1 II.2 2; 
the curves of the resonances in the p, o plane issue from the points of the IL=0 axis 

given by the equation KJ = 31(21- 3)(1 is not a multiple of three, since otherwise l/w would 

be an integer). For the remaining values of w, for fairly small ) pl,the PM (5.3) is orbitally 

stable. In particular, if a>3 or o<-1, but w + -3, then, for small 1 p I,the PM 
(5.3) exists and is orbitally stable. 

In short, in accordance with Sects.2 and 3, we can assert that, for fairly small I PI! 
the trajectories asymptotic to the trajectory of the PM (5.3) can exist only at third-order 

resonance. On the basis of the algorithm given in Sects.1 and 3, let us briefly describe the 

procedure for constructing the asymptotic trajectories at the resonances 3h = -2, realized 

with values of p and o which lie on curves (5.4). 

After the canonical change of variables $, 8, pa, me* ql, q2, pl, pz, given by the equ,ations 

9 = q1 + ~~3i,oc2 sin 2q, + , . . , e = 1/22-c - @-1 + (5.5) 

1 0 j-‘/y2 + . . . 
Pa = 0 + P*3/20-’ co.7 29, + (1 - n*~/20-z cos 2q,)p, + , . . 

pe = 1 u j’l’pz + . . . 

the Hamiltonian function (5.1) becomes periodic in 91 (with period n, and not 2n, as must 

be the case in general, because of the structure of the Hamiltonian function in the present 
specific problem), while its series expansion in powers of P17 Q2Y Pa is given by Eqs.Cl.2) 

and (1.3), where 

h, = I/* I CJ 1 (qz2 + p22) - p.v, 1 cr 1-1 [I - (2 + w-') cos 2q,lq,2 + . . . 

a, = -pp 1 u I-‘/z + . . ., a, = 0 

h, = -p.v*p1 I (3 J-siz (4 -I- cr2 - 4 cos 2q,)q,3 + . . . 



In tho new variables, the PM (5.3) can be written as 

PI = qa = I'2 = 0, 41 = WY -E- Qo 

After isoenergetic reduction, we obtain Eqs.f1.7), where the function K is given by Eqs. 
fl.5) and (l.ci), in which 

Kz = w-"h,, K, = w-"h, + p.VefJ 1 cl ~fw-'q8 (lqaa + Psa) C w . . (5.6) 

Using a linear, n-periodic in qlr canonical change of variables (which becomes the 
identity transformation when p = 0), we can /9/ introduce new variables instead of %. Pz 
in such a way that the quadratic part of the function K takes the following form (the notation 
for the variables remains the same as before): 

K, - '/,h f922 -i- ps") (n = 6' 1 CT f - f.s*V,-o-l f a j-1 -t_ . . .) 

The function K, in the first-order terms in p here remains unchanged. 
Let 3& = -2, i.e., the parameters ~1 and o lie on one of the curves (5.4). 
Using'hirkhoff's transformation /4/, we introduce new variables 8, n in such a way that 

all the non-resonant terms are excluded from K,. With n = 0 this is the identity trans- 
formation, In the new variables, the Hamiltonian K takes the form 

IT = hR i- aF~~sin (3@ 4 2qJ i- iz" (&q, qx, f.zf (5.7) 

(E = Jzri sin *, rj = JC% cos dt, a = ~.l/~ @@+1 0 j-“/s) 

The function K” in (5.7) is a set of terms of higher than the first order of smallness 
in p and higher than the third degree in E,q. 

We again make a canonical change of variables @, R-r q, r, given by the equations 

Q = ;Lgl i IV R = r G.8) 
The Bamiltonian 15.7) then becomes 

K -(- a?+ sin 3 rp + x (5.9) 

If we neglect K”, we can find from the canonical equations correspondingtotheHamiltonian 
(5.9) the following particular solutians, corresponding to asymptotic trajectories: 

F = qir = V3kzs (k = 5, 2, a .., 6), P = r, 

r* = 4r, t2 + 3a v'F@ eos 3 rpl. (qr - 4&T-~ 

On then returning to the initial variables qa, pB (introduced by the change of variables 
(5.5)), we find with an error of order e, = mar (I ~1 j/T, ro) that 

q2 = 'I/Z sin (% + plk), pz = V2G cos (% + slk) (5.10) 

If ao>O, the solutions (5.10) with even k correspond to the trajectories, asymptotic 
as f-++-a, to the trajectory of PS (5.31, while the solutions (5.101 with odd k correspond 
to the trajectories, asymptotic to the PH 15.3) as t--+ -~3; if a@<@, the reverse picture 
is obtained. 

The value of p,on the asymptotic trajectories can be found from (1.4), (1.5), (5.6), and 
(5.10)) With an error of order e, = max(I ~l~'o,rO*) we have 

PI = =i,r, (5.11) 

Eqs.($+lOf, (5.11) and (5.51, give in the initial phase space $* B,Per pe the curves on 
which the trajectories asymptotic to the closed trajectory of the &l (5.3) lie. The coordinate 
pt plays the role of parameter on these curves. To find the dependence of & on t, we have 
to use Eq.ll.8). 

6. On the motions of a rigid body which are asymptotic to its PM and are 
generated from regular precessions with non-vertical axis of precession. Let 
the rigid body move about a fixed point in a homogeneous gravitational field. We shalL assume 
that the principal moments of inertia of thebodyfor the fixed point satisfy the condition 
A=B#C, and tiat the centre of gravity does not lie on the axis of symmetry and is at a 
small distance pd from the fixed point (O< a((%, fd = o(l)). 

With p = 0 the body performs regular prcession (we exclude the case of equilibrium of 
the body and of its permanent rotations about the principal axes of inertia). Let w1 and ae 
be the angular velocities of the proper rotation and precession respectively, and o. the 
angle between the axis of dynamic symmetry of the body and the kinetic moment vector, We also 
assume that the kinetic moment vector (which lies on the axis of preeessioaf is non-vertical. 

It has been shown r/10/ that, with A =B# 2C and w1 =&r+ ii-e,, ees8, cp -&C!(A - 
Q)* two PM's are generated from each regular precession with small but non--zero values of 
p, one of which is orbitally unstable (since there exists a pair of non-zero real character- 
istic expanents) , and the other is orbitally stable to a first approximation (there is a pair 
of non-zero purely imaginary characteristic exponents), 
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Calculations show that condition (4.5) holds for PM's which are stable to a first approxi- 
mation (the calculations are particularly simple if, as in /lo/, the motion of the body is 
described by using the canonically conjugate Anduaille variables). Consequently, these PM's 
are in fact orbitally stable. 

In accordance with Sect.4, for thefirstof these PM's there are just two families of 
asymptotic motions, while there are no motions asymptotic to the second PM. 
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THE PARTIAL STABILITY OF MOTION* 

V.I. VOROTNIKOV 

It is proved that the problem of stability (asymptotic stability) with 
respect to some of the variables, for a linear system with periodic 
analytic coefficients, is equivalent to the same problem with respect to 
all the variables, either for the same system or for an auxiliary linear 
system with periodic but not necessarily continuous coefficients, in less 
dimensions than the original system. A constructive procedure is described 
for constructing this auxiliary system, and the necessary and sufficient 
conditions are established for partial stability (asymptotic stability), 
generalizing the results of the Floquet-Lyapunov theory. 

It is shown that the class of non-linear systems for which the problem 
of partial stability is solvable by linear approximation may be enlarged 
if, instead of the linear part of the original {non-linear) system, one 
considers a specially constructed linear approximating system which is 
equivalent to a certain non-linear subsystem of the original system. 
Constructive procedures are described for constructing such auxiliary 
systems, and a theorem on partial stability is proved. Well-knowntheorems 
on stability in the Lyapunov-critical cases are extended. 

1. Formulation of the problem of the stability of a linear system with 
periodic coefficients. We consider a linear system of ordinary differential equations 
of perturbed motion: 


